Characteristics of the Atmospheric Boundary Layer over a Tropical Station as Evidenced by Tethered Balloon Observations

1993 ◽  
Vol 32 (8) ◽  
pp. 1426-1432 ◽  
Author(s):  
K. G. Vernekar ◽  
Brij Mohan ◽  
Sangeeta Saxena ◽  
M. N. Patil
2017 ◽  
Vol 17 (1) ◽  
pp. 531-549 ◽  
Author(s):  
Sanjay Kumar Mehta ◽  
Madineni Venkat Ratnam ◽  
Sukumarapillai V. Sunilkumar ◽  
Daggumati Narayana Rao ◽  
Boddapaty V. Krishna Murthy

Abstract. The diurnal variation of atmospheric boundary layer (ABL) height is studied using high-resolution radiosonde observations available at 3 h intervals for 3 days continuously from 34 intensive campaigns conducted during the period December 2010–March 2014 over a tropical station Gadanki (13.5° N, 79.2° E; 375 m), in the Indian monsoon region. The heights of the ABL during the different stages of its diurnal evolution, namely, the convective boundary layer (CBL), the stable boundary layer (SBL), and the residual layer (RL) are obtained to study the diurnal variabilities. A clear diurnal variation is observed in 9 campaigns out of the 34 campaigns. In 7 campaigns the SBL did not form in the entire day and in the remaining 18 campaigns the SBL formed intermittently. The SBL forms for 33–55 % of the time during nighttime and 9 and 25 % during the evening and morning hours, respectively. The mean SBL height is within 0.3 km above the surface which increases slightly just after midnight (02:00 IST) and remains almost constant until the morning. The mean CBL height is within 3.0 km above the surface, which generally increases from morning to evening. The mean RL height is within 2 km above the surface which generally decreases slowly as the night progresses. The diurnal variation of the ABL height over the Indian region is stronger during the pre-monsoon and weaker during winter season. The CBL is higher during the summer monsoon and lower during the winter season while the RL is higher during the winter season and lower during the summer season. During all the seasons, the ABL height peaks during the afternoon (∼ 14:00 IST) and remains elevated until evening (∼ 17:00 IST). The ABL suddenly collapses at 20:00 IST and increases slightly in the night. Interestingly, it is found that the low level clouds have an effect on the ABL height variability, but the deep convective clouds do not. The lifting condensation level (LCL) is generally found to occur below the ABL for the majority of the database and they are randomly related.


2017 ◽  
Vol 185 ◽  
pp. 101-117 ◽  
Author(s):  
K.B.R.R. Hari Prasad ◽  
C.V. Srinivas ◽  
T. Narayana Rao ◽  
C.V. Naidu ◽  
R. Baskaran

2016 ◽  
Author(s):  
Sanjay Kumar Mehta ◽  
Madineni Venkat Ratnam ◽  
Sukumarapillai V. Sunilkumar ◽  
Daggumati Narayana Rao ◽  
Boddapati V. Krishna Murthy

Abstract. The diurnal variation of atmospheric boundary layer (ABL) height is studied using high resolutions radiosonde observations available every 3-h intervals for 3 days continuously from 34 intensive campaigns conducted during the period December 2010–March 2014 over a tropical station Gadanki (13.5° N, 79.2° E), in the Indian monsoon region. The heights of the ABL during the different stages of its diurnal evolution, namely, the convective boundary layer (CBL), the stable boundary layer (SBL), and the residual layer (RL) are obtained to study the diurnal variability. A clear diurnal variability in 9 campaigns is observed while in 7 campaigns the SBL does not form for the entire day and in the remaining 18 campaigns the SBL form intermittently. The SBL forms 33 %–55 % during nighttime and 9 % and 25 % during the evening and morning hours, respectively. The mean SBL height is within 0.3 km above the surface which increases slightly just after midnight (0200 IST) and remain almost steady till morning. The mean CBL height is within 3.0 km above the surface which generally increases from morning to evening. The mean RL height is within 2 km above the surface which generally decreases slowly as the night progresses. Diurnal variation of the ABL height over the Indian region is stronger during the pre-monsoon and weaker during winter season. The CBL is higher during the summer monsoon and lower during the winter season while the RL is higher during winter season and lower during summer season. During all the seasons, the ABL height peaks during the afternoon (~ 1400 IST) and remains elevated till evening (~ 1700 IST). The ABL suddenly collapses at 2000 IST due to cooling after the sunset and increases slightly over night. Interestingly, it is found that the low level clouds have an effect on the ABL height variability, but not the deep convective clouds.


2020 ◽  
pp. 105355
Author(s):  
S.V. Anisimov ◽  
S.V. Galichenko ◽  
K.V. Aphinogenov ◽  
E.V. Klimanova ◽  
A.A. Prokhorchuk ◽  
...  

2019 ◽  
Vol 12 (7) ◽  
pp. 4019-4038 ◽  
Author(s):  
Ulrike Egerer ◽  
Matthias Gottschalk ◽  
Holger Siebert ◽  
André Ehrlich ◽  
Manfred Wendisch

Abstract. The new BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) tethered balloon system is introduced. It combines a set of instruments to measure turbulent and radiative parameters and energy fluxes. BELUGA enables collocated measurements either at a constant altitude or as vertical profiles up to 1.5 km in height. In particular, the instrument payload of BELUGA comprises three modular instrument packages for high-resolution meteorological, wind vector and broadband radiation measurements. Collocated data acquisition allows for estimates of the driving parameters in the energy balance at various heights. Heating rates and net irradiances can be related to turbulent fluxes and local turbulence parameters such as dissipation rates. In this paper the technical setup, the instrument performance, and the measurement strategy of BELUGA are explained. Furthermore, the high vertical resolution due to the slow ascent speed is highlighted as a major advantage of tethered balloon-borne observations. Three illustrative case studies of the first application of BELUGA in the Arctic atmospheric boundary layer are presented. As a first example, measurements of a single-layer stratocumulus are discussed. They show a pronounced cloud top radiative cooling of up to 6 K h−1. To put this into context, a second case elaborates respective measurements with BELUGA in a cloudless situation. In a third example, a multilayer stratocumulus was probed, revealing reduced turbulence and negligible cloud top radiative cooling for the lower cloud layer. In all three cases the net radiative fluxes are much higher than turbulent fluxes. Altogether, BELUGA has proven its robust performance in cloudy conditions of the Arctic atmospheric boundary layer.


2020 ◽  
Author(s):  
Haijiong Sun ◽  
Yu Shi ◽  
Fei Hu ◽  
Zhe Zhang ◽  
Weichen Ding

<p>Physicochemical characteristics of the atmospheric boundary layer over North Plain China during the comprehensive observation experiment from 10 to 21 December 2018 were investigated in this paper. The observation data are obtained from the large tethered balloon, Doppler wind lidar, ground-level instruments. The maximum concentration of PM<sub>2.5</sub> exceeded 200 µg m-3, and the ratio value of PM<sub>2.5</sub>/PM<sub>10</sub> was basically around 0.4 (maximum has reached approximately 0.8) during the whole observation period, indicating that explosive growth of fine ode dominant aerosols during the winter heating season. The peak solar irradiance was slightly larger on the clean day, compared with the value during the pollution process. The correlation coefficient between the concentration of PM<sub>2.5</sub> and CO was highest (0.725) among the gas pollutants, and the relationship between O<sub>3</sub> and PM<sub>2.5</sub> was basically negative correlated, not simple linear relationship. Three distinctly different vertical profile types of the PM<sub>2.5</sub> were categorized according to the vertical changes based on the total 33 vertical profiles obtained by the tethered balloon. Type 1 was mainly observed in the daytime, accounted for nearly 51.5%, the PM<sub>2.5</sub> concentration decreased nearly linearly as a function of height below approximate 600 m; Type 2 shows a sharp decreasing trend from the ground to about 200 m; Type 3 shows multi-layer structure of pollutants, some pollutants suspended aloft in upper air. The vertical profile of PM<sub>2.5</sub> was closely related to the atmospheric vertical structure such as the wind, temperature and turbulent kinetic energy, caused by the diurnal variation of the boundary layer. Small wind layer and the weak turbulence activities contributed to the accumulation of pollutants. Vertical patterns of the concentration of PM<sub>2.5</sub> were also greatly affected by the local ground emission sources and regional transport processes.</p>


2021 ◽  
Vol 35 (1) ◽  
pp. 209-223
Author(s):  
Haijiong Sun ◽  
Yu Shi ◽  
Lei Liu ◽  
Weichen Ding ◽  
Zhe Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document